Twistor and Killing Spinors in Lorentzian Geometry

نویسندگان

  • Helga Baum
  • H. BAUM
چکیده

— This paper is a survey of recent results concerning twistor and Killing spinors on Lorentzian manifolds based on lectures given at CIRM, Luminy, in June 1999, and at ESI, Wien, in October 1999. After some basic facts about twistor spinors we explain a relation between Lorentzian twistor spinors with lightlike Dirac current and the Fefferman spaces of strictly pseudoconvex spin manifolds which appear in CR-geometry. Secondly, we discuss the relation between twistor spinors with timelike Dirac current and Lorentzian Einstein Sasaki structures. Then, we indicate the local structure of all Lorentzian manifolds carrying real Killing spinors. In particular, we show a global Splitting Theorem for complete Lorentzian manifolds in the presence of Killing spinors. Finally, we review some facts about parallel spinors in Lorentzian geometry. Résumé (Twisteurs et spineurs de Killing en géométrie lorentzienne). — Le présent papier est un article de synthèse basé sur les exposés donnés au CIRM, Luminy, en juin 1999, et à l’ESI, Vienne, en octobre 1999, concernant des nouveaux résultats sur les spineurs twisteurs et les spineurs de Killing lorentziens. Après quelques préliminaires sur les spineurs twisteurs, on met en évidence des relations entre les spineurs twisteurs lorentziens admettant un courant de Dirac isotrope et les espaces de Fefferman des variétés spinorielles strictement pseudoconvexes qui apparaissent dans la géométrie CR. De plus, on décrit la relation entre les spineurs twisteurs admettant un courant de Dirac de type temps et les structures de Sasaki-Einstein lorentziennes. On indique aussi la structure locale des variétés lorentziennes admettant des spineurs de Killing réels. En particulier, on obtient un théorème de < splitting > global pour les variétés lorentziennes complètes qui admettent des spineurs de Killing. Enfin, on fait le point sur la théorie des spineurs parallèles en géométrie lorentzienne. 2000 Mathematics Subject Classification. — 58G30, 53C50, 53A50.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal Conformal Killing Forms

We introduce in this paper normal twistor equations for differential forms and study their solutions, the so-called normal conformal Killing forms. The twistor equations arise naturally from the canonical normal Cartan connection of conformal geometry. Reductions of its holonomy are related to solutions of the normal twistor equations. The case of decomposable normal conformal holonomy represen...

متن کامل

Twistor Spinors on Lorentzian Manifolds, Cr-geometry and Feeerman Spaces

The paper deals with twistor spinors on Lorentzian manifolds. In particular , we explain a relation between a certain class of Lorentzian twistor spinors and the Feeerman spaces of strictly pseudoconvex spin manifolds which appear in CR-geometry. Let (M n;k ; g) be a n-dimensional smooth semi-Riemannian spin manifold of index k with the spinor bundle S. There are two conformally covariant diffe...

متن کامل

About Twistor Spinors with Zero in Lorentzian Geometry

We describe the local conformal geometry of a Lorentzian spin manifold (M, g) admitting a twistor spinor φ with zero. Moreover, we describe the shape of the zero set of φ. If φ has isolated zeros then the metric g is locally conformally equivalent to a static monopole. In the other case the zero set consists of null geodesic(s) and g is locally conformally equivalent to a Brinkmann metric. Our ...

متن کامل

A Note on Twistor Spinors with Zeros in Lorentzian Geometry

We show in this note that if a twistor spinor has a zero on a Lorentzian spin manifold M of arbitrary dimension then the twistor is almost everywhere on M locally conformally equivalent to a parallel spinor.

متن کامل

Twistor spinors on Lorentzian symmetric spaces

An indecomposable Riemannian symmetric space which admits nontrivial twistor spinors has constant sectional curvature. Furthermore, each homogeneous Riemannian manifold with parallel spinors is at. In the present paper we solve the twistor equation on all indecomposable Lorentzian symmetric spaces explicitly. In particular, we show that there are-in contrast to the Riemannian case-indecom-posab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000